NH2-terminal Inactivation Peptide Binding to C-type–inactivated Kv Channels

نویسندگان

  • Harley T. Kurata
  • Zhuren Wang
  • David Fedida
چکیده

In many voltage-gated K(+) channels, N-type inactivation significantly accelerates the onset of C-type inactivation, but effects on recovery from inactivation are small or absent. We have exploited the Na(+) permeability of C-type-inactivated K(+) channels to characterize a strong interaction between the inactivation peptide of Kv1.4 and the C-type-inactivated state of Kv1.4 and Kv1.5. The presence of the Kv1.4 inactivation peptide results in a slower decay of the Na(+) tail currents normally observed through C-type-inactivated channels, an effective blockade of the peak Na(+) tail current, and also a delay of the peak tail current. These effects are mimicked by addition of quaternary ammonium ions to the pipette-filling solution. These observations support a common mechanism of action of the inactivation peptide and intracellular quaternary ammonium ions, and also demonstrate that the Kv channel inner vestibule is cytosolically exposed before and after the onset of C-type inactivation. We have also examined the process of N-type inactivation under conditions where C-type inactivation is removed, to compare the interaction of the inactivation peptide with open and C-type-inactivated channels. In C-type-deficient forms of Kv1.4 or Kv1.5 channels, the Kv1.4 inactivation ball behaves like an open channel blocker, and the resultant slowing of deactivation tail currents is considerably weaker than observed in C-type-inactivated channels. We present a kinetic model that duplicates the effects of the inactivation peptide on the slow Na(+) tail of C-type-inactivated channels. Stable binding between the inactivation peptide and the C-type-inactivated state results in slower current decay, and a reduction of the Na(+) tail current magnitude, due to slower transition of channels through the Na(+)-permeable states traversed during recovery from inactivation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energetics of Shaker K channels block by inactivation peptides

A synthetic peptide of the NH2-terminal inactivation domain of the ShB channel blocks Shaker channels which have an NH2-terminal deletion and mimics many of the characteristics of the intramolecular inactivation reaction. To investigate the role of electrostatic interactions in both peptide block and the inactivation process we measured the kinetics of block of macroscopic currents recorded fro...

متن کامل

Ion Conduction through C-Type Inactivated Shaker Channels

C-type inactivation of Shaker potassium channels involves entry into a state (or states) in which the inactivated channels appear nonconducting in physiological solutions. However, when Shaker channels, from which fast N-type inactivation has been removed by NH2-terminal deletions, are expressed in Xenopus oocytes and evaluated in inside-out patches, complete removal of K+ ions from the interna...

متن کامل

Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation.

Dynamic inactivation in Kv4 A-type K(+) current plays a critical role in regulating neuronal excitability by shaping action potential waveform and duration. Multifunctional auxiliary KChIP1-4 subunits, which share a high homology in their C-terminal core regions, exhibit distinctive modulation of inactivation and surface expression of pore-forming Kv4 subunits. However, the structural differenc...

متن کامل

Regulation of Deactivation by an Amino Terminal Domain in Human Ether-à-go-go –related Gene Potassium Channels

Abnormalities in repolarization of the cardiac ventricular action potential can lead to life-threatening arrhythmias associated with long QT syndrome. The repolarization process depends upon the gating properties of potassium channels encoded by the human ether-à-go-go-related gene (HERG), especially those governing the rate of recovery from inactivation and the rate of deactivation. Previous s...

متن کامل

4-aminopyridine prevents the conformational changes associated with p/c-type inactivation in shaker channels.

The effect of 4-aminopyridine (4-AP) on Kv channel activation has been extensively investigated, but its interaction with inactivation is less well understood. Voltage-clamp fluorimetry was used to directly monitor the action of 4-AP on conformational changes associated with slow inactivation of Shaker channels. Tetramethylrhodamine-5-maleimide was used to fluorescently label substituted cystei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2004